Autopromocja
Dziennik Gazeta Prawana logo
Technologie

Pogoda znów zaskoczyła przewidywalnością

14 kwietnia 2023
Ten tekst przeczytasz w 4 minuty

K limat się zmienia. Pogoda staje się coraz bardziej nieprzewidywalna, przy tym coraz częściej występują zjawiska gwałtowne oraz ekstremalne. Dotychczasowe narzędzia przewidywania nie nadążają za tymi zmianami, a przecież precyzyjna wiedza o tym, co nasz czeka, oznacza lepsze planowanie i ocenianie ryzyka – sprawa dotyczy zarówno rzeczy tak błahej jak nasze urlopy, jak i np. zbierania plonów czy tworzenia połączeń lotniczych i morskich. Przyjrzyjmy się najnowszemu trendowi zastosowania sztucznej inteligencji w przewidywaniu pogody.

Modelowanie pogody jest ogromnym wyzwaniem. Jest ona zjawiskiem chaotycznym: drobne zmiany potrafią drastycznie zmienić drogę jej rozwoju. W przeszłości fizycy starali się opisać interakcje cząsteczek i przepływ energii w modelach takich jak GCM – w tym celu rozwijali deterministyczne układy równań różniczkowych cząstkowych. Ale obliczenia są czasochłonne, a im więcej szczegółowych danych, tym więcej czasu potrzeba na ich przetworzenie. Są one także wrażliwe na założone warunki początkowe i explicite spisane formuły (co może też być ich zaletą w przypadku prawidłowych formuł). Nowym podejściem do problemu jest wykorzystanie narzędzi stochastycznych, nauczenie się poprzez narzędzia sztucznej inteligencji wzorców pogody.

Lucy Harris, Andrew McRae, Tim Palmer (Uniwersytet Oksfordzki) i Matthew Chantry, Peter Deuben (Europejskie Centrum Średnioterminowych Przewidywań Pogody) postanowili zająć się problemem ograniczonej szczegółowości, czyli granulacji prognoz. Gdyby spojrzeć na mapy stworzone z przewidywań dotychczasowych modeli, miałyby one niską rozdzielczość. Ze względu na moc koniecznych obliczeń tradycyjne modele mogą korzystać jedynie z uśrednionych wartości parametrów na większych obszarach – mankamentem tego rozwiązania jest to, że wynik również będzie uśredniony. By zniwelować tę niedogodność, otrzymane z tradycyjnego modelu dane badacze potraktowali technikami generatywnych sieci neuronowych (VAE/GAN). Podobne techniki stosowano dotychczas do poprawy rozdzielczości niewyraźnych zdjęć. Dzięki takiemu zabiegowi badacze otrzymywali przewidywania dla coraz to mniejszych obszarów geograficznych. Tym samym udało im się także poprawić przewidywania pogody o kilka procent.

Źródło: Dziennik Gazeta Prawna

Materiał chroniony prawem autorskim - wszelkie prawa zastrzeżone.

Dalsze rozpowszechnianie artykułu za zgodą wydawcy INFOR PL S.A. Kup licencję.